

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

EVALUACIÓN PARA EL ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2020-2021

MATERIA: QUÍMICA

INSTRUCCIONES GENERALES Y CALIFICACIÓN

Después de leer atentamente el examen, responda a <u>cinco</u> preguntas cualesquiera a elegir entre las diez que se proponen.

TIEMPO Y CALIFICACIÓN: 90 minutos. Todas las preguntas se calificarán sobre 2 puntos.

- **A.1 (2 puntos)** Dados los elementos A (Z=17), B (Z=35), C (Z=19) y D (Z=11):
 - a) Escriba la configuración electrónica de cada uno de ellos.
 - b) Justifique cuáles se encuentran en el mismo periodo.
 - c) Razone si el elemento D (Z=11) presenta mayor afinidad electrónica que el A (Z=17).

Puntuación máxima por apartado: 1 punto apartado a); 0,5 puntos apartados b) y c).

- A.2 (2 puntos) Conteste razonadamente las siguientes preguntas para los ácidos: HNO2, HF y HCN.
 - a) Suponiendo disoluciones acuosas de igual concentración de cada uno de ellos, explique cuál presenta menor pH.
 - b) Justifique y ordene de mayor a menor basicidad las bases conjugadas.
 - c) Obtenga el pH de una disolución acuosa 0,2 M de HCN.

Datos. Ka (HNO₂) = 4.5×10^{-4} ; Ka (HF) = 7.1×10^{-4} ; Ka (HCN) = 4.9×10^{-10} .

Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

- **A.3 (2 puntos)** Se mezclan 0,200 L de disolución de nitrato de bario 0,100 M con 0,100 L de disolución de fluoruro de potasio 0,400 M. Considere los volúmenes aditivos.
 - a) Escriba el equilibrio de solubilidad que tiene lugar, detallando el estado de todas las especies.
 - b) Justifique numéricamente la precipitación del fluoruro de bario.
 - c) Explique si aumenta, disminuye o no varía la solubilidad del fluoruro de bario cuando se le añade una disolución de ácido fluorhídrico.

Dato. Ks (fluoruro de bario) = 1.0×10^{-6} .

Puntuación máxima por apartado: 0,5 puntos apartados a) y c); 1 punto apartado b).

- **A.4 (2 puntos)** Se construye una pila formada por un electrodo de zinc, sumergido en una disolución 1 M de $Zn(NO_3)_2$ y conectado por un puente salino con un electrodo de cobre, sumergido en una disolución 1 M de $Cu(NO_3)_2$.
 - a) Ajuste las reacciones que tienen lugar en el ánodo y en el cátodo, y la reacción iónica global.
 - b) Escriba la notación de la pila y detalle para qué sirve el puente salino.
 - c) Indique en qué sentido circula la corriente en el conductor eléctrico.
- d) Indique en qué electrodo se deposita cobre.

Datos. $E^{0}(V)$: $Zn^{2+}/Zn = -0.76$; $Cu^{2+}/Cu = 0.34$.

Puntuación máxima por apartado: 0,5 puntos.

A.5 (2 puntos) Conteste las siguientes cuestiones:

- a) Nombre los siguientes compuestos: $CH_3-CH(CH_3)-C(CH_3)=CH-CH_2-CH_2-CH_3$; $CH_3-CHOH-CH(C_2H_5)-CH_2-OH$.
- b) Formule la reacción, indique de qué tipo es, y nombre los compuestos orgánicos implicados: propan $-2-ol+H_2SO_4/calor\to$
- c) Formule la reacción, indique de qué tipo es, y nombre los compuestos orgánicos implicados: pent-2-eno + $H_2O/H^+ \rightarrow$
- d) Formule la reacción, indique de qué tipo es, y nombre los compuestos orgánicos implicados: 3-metilpentan−1-ol + HBr →

Puntuación máxima por apartado: 0,5 puntos.

- **B.1 (2 puntos)** Responda las siguientes cuestiones:
 - a) Justifique si la molécula NH₃ es polar utilizando la teoría de hibridación y su geometría.
 - b) Explique si los siguientes compuestos presentan enlace de hidrógeno: H₂O, CH₄ y HCl.
 - c) Justifique por qué el bromuro de sodio tiene un punto de fusión menor que el cloruro de sodio.

Puntuación máxima por apartado: 0,75 puntos apartados a) y b); 0,5 puntos apartado c).

- **B.2 (2 puntos)** La ecuación de velocidad de la reacción $CO(g) + NO_2(g) \rightarrow CO_2(g) + NO(g)$ es $v = k [NO_2]^2$. Justifique si son verdaderas o falsas las siguientes afirmaciones:
 - a) La velocidad de desaparición de ambos reactivos es la misma.
 - b) Las unidades de la constante de velocidad son: mol·L·s⁻¹.
 - c) La velocidad de la reacción aumenta al duplicar la concentración inicial de CO(g).
- d) En esta reacción en particular, la constante de velocidad no depende de la temperatura, porque la reacción se produce en fase gaseosa.

Puntuación máxima por apartado: 0,5 puntos.

- **B.3 (2 puntos)** Se puede obtener cloro gaseoso en la oxidación del ácido clorhídrico con ácido nítrico, produciéndose también dióxido de nitrógeno y agua.
- a) Indique cuál es la especie oxidante y cuál la reductora. Ajuste la reacción iónica global y la reacción molecular por el método del ion-electrón.
- b) Sabiendo que el rendimiento de la reacción es del 82%, calcule el volumen de cloro que se obtiene a 25 °C y 1,0 atm, cuando reaccionan 600 mL de una disolución 2,00 M de HCl con ácido nítrico en exceso. Dato. R = 0,082 atm·L·mol⁻¹·K⁻¹.

Puntuación máxima por apartado: 1 punto.

- **B.4 (2 puntos)** En un reactor de 25,00 L a 440 °C, se introducen 5,00 mol de hidrógeno y 2,00 mol de nitrógeno, obteniendo 50,0 g de NH₃ (g) cuando se alcanza el equilibrio 3 H₂ (g) \pm 2 NH₃ (g).
 - a) Exprese el número de moles en equilibrio de los reactivos y del producto, en función de x (cambio de concentración en mol), y calcule sus valores.
 - b) Obtenga Kc y Kp.
 - c) Razone cómo se modifica el equilibrio si la reacción transcurre a la misma temperatura, pero aumenta la presión total.

Datos. R = $0.082 \text{ atm} \cdot \text{L} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Masas atómicas: H = 1.0; N = 14.0.

Puntuación máxima por apartado: 0,5 puntos apartado a); 0,75 puntos apartados b) y c).

- **B.5 (2 puntos)** La fórmula molecular C₄H₈O₂, ¿a qué sustancia o sustancias de las propuestas a continuación corresponde? Justifique la respuesta escribiendo en cada caso su fórmula semidesarrollada y molecular.
 - a) Ácido butanoico.
 - b) Butanodial.
 - c) Propanoato de metilo.
 - d) Ácido metilpropanoico.

Puntuación máxima por apartado: 0,5 puntos.

QUÍMICA CRITERIOS ESPECÍFICOS DE CORRECCIÓN

Si se han contestado más de cinco preguntas, únicamente deberán corregirse las cinco preguntas resueltas en primer lugar.

Se tendrá en cuenta en la calificación de la prueba:

- 1.- Claridad de comprensión y exposición de conceptos.
- 2.- Uso correcto de formulación, nomenclatura y lenguaje químico.
- 3.- Capacidad de análisis y relación.
- 4.- Desarrollo de la resolución de forma coherente y uso correcto de unidades.
- 5.- Aplicación y exposición correcta de conceptos en el planteamiento de las preguntas.

Distribución de puntuaciones para este ejercicio

Cada una de las preguntas se podrá calificar con un máximo de 2 puntos.

Distribución de puntuaciones máximas por apartado:

- A.1.- 1 punto apartado a); 0,5 puntos apartados b) y c).
- A.2.- 0,5 puntos apartado a); 0,75 puntos apartados b) y c).
- A.3.- 0,5 puntos apartados a) y c); 1 punto apartado b).
- A.4.- 0,5 puntos por apartado.
- A.5.- 0,5 puntos por apartado.
- B.1.- 0,75 puntos apartados a) y b); 0,5 puntos apartado c).
- B.2.- 0,5 puntos por apartado.
- B.3.- 1 punto por apartado.
- B.4.- 0,5 puntos apartado a); 0,75 puntos apartados b) y c).
- B.5.- 0,5 puntos por apartado.