

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

Curso 2015-2016

Modelo

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

Después de leer atentamente todas las preguntas, el alumno deberá escoger **una** de las dos opciones propuestas v responder a las cuestiones de la opción elegida. Para la realización de esta prueba se puede utilizar calculadora científica, siempre que no disponga de capacidad de representación gráfica o de cálculo simbólico y no tenga más de dos líneas de texto.

CALIFICACIÓN: Cada pregunta se valorará sobre 2 puntos.

TIEMPO: 90 minutos.

OPCIÓN A

Ejercicio 1. (Calificación máxima: 2 puntos)

Considérese la matriz $A = \begin{pmatrix} 1 & 3 & 1 \\ a & 0 & 8 \\ -1 & a & -6 \end{pmatrix}$

- a) Determínese para qué valores de $a \in \mathbb{R}$ es invertible A.
- b) Resuélvase para a = 0 el sistema

$$A \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Ejercicio 2. (Calificación máxima: 2 puntos)

Determínese la matriz X que verifica $\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} \cdot X = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 4 & -1 \end{pmatrix} \cdot X$.

Ejercicio 3. (Calificación máxima: 2 puntos)

Se considera la función real de variable real:

$$f(x) = \frac{x^3}{1 - x^2}$$

- a) Estúdiense y determínense sus asíntotas.
- b) Determínense sus intervalos de crecimiento y decrecimiento.

Ejercicio 4. (Calificación máxima: 2 puntos)

En un polígono industrial se almacenan 30000 latas de refresco procedentes de las fabricas A, B y C a partes iguales. Se sabe que en 2016 caducan 1800 latas de la fábrica A, 2400 procedentes de la B y 3000 que proceden de la fábrica C.

- a) Calcúlese la probabilidad de que una lata elegida al azar caduque en 2016.
- b) Se ha elegido una lata de refresco aleatoriamente y caduca en 2016, ¿cuál es la probabilidad de que proceda de la fábrica A?

Ejercicio 5. (Calificación máxima: 2 puntos)

El tiempo diario que los adultos de una determinada ciudad dedican a actividades deportivas, expresado en minutos, se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica σ = 20 minutos.

- a) Para una muestra aleatoria simple de 250 habitantes de esa ciudad se ha obtenido un tiempo medio de dedicación a actividades deportivas de 90 minutos diarios. Calcúlese un intervalo de confianza al 90 % para μ .
- b)¿Qué tamaño mínimo debe de tener una muestra aleatoria simple para que el error máximo cometido en la estimación de µ por la media muestral sea menor que 1 minuto con el mismo nivel de confianza del 90 %?

OPCIÓN B

Ejercicio 1. (Calificación máxima: 2 puntos)

Se considera el sistema de ecuaciones lineales, dependiente del parámetro real a:

$$\begin{cases} x + y - z = 1 \\ 2x + 2y - 3z = 3 \\ 3x + ay - 2z = 5 \end{cases}$$

- a) Discútase el sistema para los diferentes valores de a.
- b) Resuélvase el sistema en el caso a = 2.

Ejercicio 2. (Calificación máxima: 2 puntos)

Se considera la función real de variable real

$$f(x) = x^2 - 4x - 5$$

- a) Represéntese gráficamente la función f.
- b) Calcúlese el área de la región acotada del plano delimitada por la gráfica de f y el eje de abscisas.

Ejercicio 3. (Calificación máxima: 2 puntos)

Dada la función real de variable real

$$f(x) = x^2 e^{x^2}$$

- a) Calcúlese su función derivada.
- b) Determínense sus intervalos de concavidad (∩) y convexidad (↓).

Ejercicio 4. (Calificación máxima: 2 puntos)

Las probabilidades de que cinco jugadores de baloncesto encesten un lanzamiento de tiro libre son, respectivamente, de 0,8; 0,9; 0,7; 0,9; 0,93. Si cada jugador lanza un tiro libre siguiendo el orden anterior y considerando los resultados de los lanzamientos como sucesos independientes, calcúlese la probabilidad de que:

- a) Todos los jugadores encesten su tiro libre.
- b) Al menos uno de los tres primeros jugadores enceste.

Ejercicio 5. (Calificación máxima: 2 puntos)

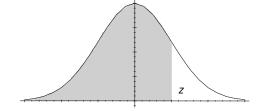
El precio (en euros) del metro cuadrado de las viviendas de un determinado municipio se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica σ = 650 euros.

- a) Se toma una muestra aleatoria simple y se obtiene un intervalo de confianza (2265, 375; 2424, 625) para μ , con un nivel de confianza del 95 %. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Tomamos una muestra aleatoria simple de tamaño 225. Calcúlese el error máximo cometido en la estimación de μ por la media muestral con un nivel de confianza del 99 %.

Matemáticas Aplicadas a las Ciencias Sociales

ÁREAS BAJO LA DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESTÁNDAR

Los valores en la tabla representan el área bajo la curva normal hasta un valor positivo de z.



		01	02	0.2	0.4	0.5	0.0	0.7	00	00
Z	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9954	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990

Soluciones OPCIÓN A

Ejercicio A1

a) Mediante el determinante, veremos cuándo no es invertible.

$$\begin{vmatrix} 1 & 3 & 1 \\ a & 0 & 8 \\ -1 & a & -6 \end{vmatrix} = -24 + a^2 - 8a + 18a = a^2 + 10a - 24.$$

Igualando esa expresión a 0 y resolviendo obtendremos los valores para los que no admite inversa. Resulta a=-12 o a=2. Para todos los demás valores de a sí es invertible.

b) Para a=0 la matriz A es invertible. Por tanto, el sistema es compatible determinado. Por tratarse de un sistema homogéneo la única solución es la trivial $x=0,\ y=0,\ z=0.$

Ejercicio A2

Pasando uno de los términos al miembro de la izquierda y sacando factor común podemos reescribir así la ecuación:

$$\left[\begin{pmatrix} 3 & 1 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 4 & -1 \end{pmatrix} \right] \cdot X = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$$

de donde

$$X = \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & -4 \\ -2 & 16 \end{pmatrix}$$

Ejercicio A3

a) La función presenta asíntotas verticales en $x=-1,\ x=1.$

Si tiene asíntotas horizontales y/o oblícuas son de la forma y=mx+n donde $m=\lim_{x\to\pm\infty}\frac{f(x)}{r}$.

En este caso $\lim_{x\to-\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\frac{f(x)}{x}=\lim_{x\to\infty}\frac{x^3}{x-x^3}=-1$ la ordenada en el origen n viene dada por

$$n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} \frac{x^3}{1 - x^2} + x = \lim_{x \to \infty} \frac{x^3 + x - x^3}{1 - x^2} = 0$$

Por lo que tiene una asíntota oblicua y = -x.

b)

$$f'(x) = \frac{3x^2(1-x^2) + 2x \cdot x^3}{(1-x^2)^2} = \frac{3x^2 - x^4}{(1-x^2)^2} = \frac{x^2}{(1-x^2)^2} \cdot (3-x^2).$$

Así, f'(x)>0 si $|x|<\sqrt{3}$. Teniendo en cuenta en qué puntos no está definida, resulta: f decrece en $(-\infty,-\sqrt{3})$ y $(\sqrt{3},\infty)$ f crece en $(-\sqrt{3},-1)$, (-1,1) y $(1,\sqrt{3})$.

Ejercicio A4

- a) Simplemente hay que aplicar la Ley de Laplace. Casos favorables: 1800+2400+3000=7200. Casos posibles 30000. Así la probabilidad es $\frac{7200}{30000} = \frac{6}{25}$.
- b) De nuevo, interpretando lo que se pide, se resuelve directamente. Favorables: 1800. Posibles 7200. Probabilidad es $\frac{1800}{7200} = \frac{1}{4}$.

Ejercicio A5

a) El radio del intervalo viene dado por la expresión $z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$. Sustituyendo los datos resulta $1,64\cdot\frac{20}{\sqrt{250}}=2,07$.

Así, el intervalo pedido es (87, 93; 92, 07)

b) De nuevo, aplicando la misma expresión, obtenemos $1,64\cdot\frac{20}{\sqrt{n}}\leq 1$, de donde $\sqrt{n}\geq 1,64\cdot 20\Rightarrow n\geq (1,64\cdot 20)^2=1075,85$ por lo que la muestra tiene que tener un tamaño mínimo de 1076 adultos.

Soluciones OPCIÓN B

Ejercicio B1

a) Calcularemos el determinante de la matriz de coeficientes. Si éste es distinto de 0 el sistema será compatible determinado.

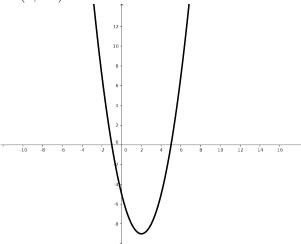
Haciendo las correspondientes operaciones obtenemos que det(A) = a - 3. Estudiando el sistema en el caso a = 3 vemos que el rango de la matriz de coeficientes es 2 y el de la ampliada es 3.

Por tanto el sistema es incompatible para a=3 y compatible determinado en todos los demás casos.

b) El sistema es compatible determinado. resulta $x=3,\ y=-3,\ z=-1.$

Ejercicio B2

a) La gráfica de la función es una parábola que corta a los ejes en (-1,0), (5,0) y (0,-5). Tiene un mínimo en (2,-9)



b) El área viene dado por

$$\int_{-1}^{5} |f(x)| dx = \int_{-1}^{5} (-x^2 + 4x + 5) dx = \left[-\frac{x^3}{3} + 2x^2 + 5x \right]_{-1}^{5} = 36.$$

Ejercicio B3

a)
$$f'(x) = 2x \cdot e^{x^2} + x^2 \cdot 2x \cdot e^{x^2} = 2xe^{x^2} + 2x^3e^{x^2}$$
.

b)
$$f''(x) = 2e^{x^2} + 4x^2e^{x^2} + 6x^2e^{x^2} + 4x^4e^{x^2} = (2 + 10x^2 + 4x^4)e^{x^2} > 0$$
 siempre.

Así la función tiene la segunda derivada positiva. La función es siempre convexa (con esta forma ∪).

Ejercicio B4

a) Pedimos que se verifiquen 5 sucesos independientes. Se multiplican las probabilidades:

$$0.8 \cdot 0.9 \cdot 0.7 \cdot 0.9 \cdot 0.93 = 0.4218.$$

b) En este caso lo más sencillo es calcular la probabilidad del suceso complementario: que no enceste ninguno. La probabilidad de que ninguno de los tres primeros jugadores enceste es $0, 2 \cdot 0, 1 \cdot 0, 3$ y, por tanto, la probabilidad pedida es $1 - 0, 2 \cdot 0, 1 \cdot 0, 3 = 0,994$.

Ejercicio B5

a) La media muestral es 2345 (punto medio del intervalo). El error es el radio del intervalo que nos dan: 2424,625-2345=79,625.

Llevándolo a la fórmula $z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ resulta

$$1,96\frac{650}{\sqrt{n}} = 79,625 \Rightarrow \sqrt{n} = \frac{1,96 \cdot 650}{79,625} = 16$$

De donde la muestra elegida viene dada por $16^2=256$. Así la muestra tiene un número mínimo de 256 viviendas.

b) El valor es el error

$$z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 2,57 \cdot \frac{650}{\sqrt{225}} = 111,367$$
euros

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II CRITERIOS ESPECÍFICOS DE CORRECCIÓN Y CALIFICACIÓN

ATENCIÓN: La calificación debe hacerse en múltiplos de 0,25 puntos

OPCIÓN A

Ejercicio 1. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto. Cálculo correcto del determinante de A	0.50 nuntos
Discusión y solución correcta	
Apartado (b): 1 punto.	0,50 pulltos.
Solución correcta del sistema	1.00 nunto
Solucion correcta dei sistema	1,00 puiito.
Ejercicio 2. (Puntuación máxima: 2 puntos).	
Despejar la matriz X	
Cálculo de la inversa que aparece	0,50 puntos.
Solución final	0,50 puntos.
Ejercicio 3. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	
Obtener asíntotas verticales	, I
Obtener asíntota oblicua	0,50 puntos.
Apartado (b): 1 punto.	
Cálculo correcto de la derivada	
Estudio correcto de los intervalos.	0,50 puntos.
Figuriais 4 (Duntussión máxims: 2 nuntss)	
Ejercicio 4. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto. Planteamiento correcto	0.50 muntos
Cálculo correcto de la probabilidad pedida	
Apartado (b): 1 punto.	0,50 pulltos.
Planteamiento correcto	0.50 nuntos
Cálculo correcto de la probabilidad pedida	
Calculo correcto de la probabilidad pedida	0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	
Cálculo correcto de z _{α/2}	0,25 puntos.
Expresión correcta de la fórmula	0,25 puntos.
Determinación correcta del intervalo de confianza	
Apartado (b): 1 punto.	, 1
Expresión correcta de la fórmula	0,25 puntos.
Obtención correcta del mínimo tamaño de la muestra	0,75 puntos.

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

OPCIÓN B

Ejercicio 1. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	
Obtención del valor crítico.	•
Discusión correcta.	0,50 puntos.
Apartado (b): 1 punto.	
Resolución correcta del sistema	1,00 punto.
	, 1
Firming 2 (Dente vite or friend 2 months)	
Ejercicio 2. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	0.0.5
Identificación como parábola	· •
Cálculo correcto cortes con ejes	
Determinación correcta del vértice.	0,50 puntos.
Apartado (b): 1 punto.	
Planteamiento correcto	0,25 puntos.
Cálculo correcto de la función primitiva	0,50 puntos.
Cálculo correcto de la integral definida.	_
<u> </u>	
Ejercicio 3. (Puntuación máxima: 2 puntos). Apartado (a): 1 punto.	
Uso correcto de la derivación de un producto	0,25 puntos.
Uso correcto de la regla de la cadena	
Cálculo correcto de la derivada	
Apartado (b): 1 punto.	o,e o puntos.
Cálculo correcto de la segunda derivada	0.50 nuntos
Estudio correcto de los signos.	, 1
Estudio correcto de los signos	0,50 pantos.
Ejercicio 4. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	0.70
Planteamiento correcto	
Cálculo correcto de la probabilidad pedida	0,50 puntos.
Apartado (b): 1 punto.	
Planteamiento correcto.	0,50 puntos.
Cálculo correcto de la probabilidad pedida	0,50 puntos.
Ejercicio 5. (Puntuación máxima: 2 puntos).	
Apartado (a): 1 punto.	
Cálculo correcto de $z_{\alpha/2}$	0.25 nuntos
	•
Cálculo correcto de la media muestral	
Expresión correcta de la fórmula del tamaño	_
Cálculo correcto del tamaño muestral	0,25 puntos.
Apartado (b): 1 punto.	0.05
Cálculo correcto de z _{α/2}	•
Expresión correcta de la fórmula	0,25 puntos.
Cálculo correcto del error.	0,50 puntos.

NOTA: La resolución de ejercicios por cualquier otro procedimiento correcto, diferente al propuesto por los coordinadores, ha de valorarse con los criterios convenientemente adaptados.

Principales conceptos que se tendrán en cuenta en la elaboración de la Prueba de Acceso a las Enseñanzas Universitarias Oficiales de Grado correspondientes a la materia:

"Matemáticas Aplicadas a las Ciencias Sociales II"

Curso 2015-16

1.- Álgebra.

- Utilización de matrices como forma de representación de situaciones de contexto real.
- Transposición, suma, producto de matrices y producto de matrices por números reales.
- Concepto de inversa de una matriz. Obtención de la inversa de matrices de órdenes dos y tres.
- Determinantes de órdenes dos y tres.
- Resolución de ecuaciones y sistemas de ecuaciones matriciales sencillos. Regla de Cramer.
- Discusión y resolución de sistemas de ecuaciones lineales con dos o tres incógnitas y un parámetro.
- Resolución de problemas con enunciados relativos a las ciencias sociales y a la economía que pueden resolverse mediante el planteamiento de sistemas de ecuaciones lineales con dos o tres incógnitas.
- Interpretación y resolución gráfica de inecuaciones y sistemas de inecuaciones lineales con dos incógnitas.
- Iniciación a la programación lineal bidimensional. Región factible. Solución óptima.
- Aplicación de la programación lineal a la resolución de problemas de contexto real con dos variables. Interpretación de la solución obtenida.

2.- Análisis.

- Límite y continuidad de una función en un punto.
- · Límites laterales. Ramas infinitas.
- Continuidad de funciones definidas a trozos.
- Determinación de asíntotas de funciones racionales.
- Derivada de una función en un punto. Interpretación geométrica.
- Relación entre continuidad y derivabilidad.
- Derivación de funciones polinómicas, exponenciales y logarítmicas. Reglas de derivación: sumas, productos y cocientes. Composición de funciones polinómicas, exponenciales y logarítmicas.
- Aplicaciones:
 - o Cálculo de la tasa de variación instantánea, ritmo de crecimiento, coste

- marginal, etc.
- Obtención de la ecuación de la recta tangente a una curva en un punto de la misma.
- Obtención de extremos relativos, puntos de inflexión e intervalos de crecimiento y decrecimiento de una función.
- o Resolución de problemas de optimización.
- Estudio y representación gráfica de funciones polinómicas, racionales, exponenciales y logarítmicas sencillas a partir de sus propiedades globales y locales.
- Integrales indefinidas. Propiedades elementales. Cálculo de integrales indefinidas inmediatas o reducibles a inmediatas.
- Integrales definidas de funciones polinómicas, exponenciales y racionales inmediatas mediante la aplicación de la regla de Barrow.
- Aplicación de la integral definida al cálculo de áreas planas.

3.- Probabilidad y Estadística.

- Experimentos aleatorios. Concepto de espacio muestral y de suceso elemental.
- Operaciones con sucesos. Leyes de De Morgan.
- Definición de probabilidad. Probabilidad de la unión, intersección, diferencia de sucesos y suceso contrario o complementario.
- Regla de Laplace de asignación de probabilidades.
- Probabilidad condicionada. Teorema del Producto, Teorema de la Probabilidad Total y Teorema de Bayes.
- Concepto de población y muestra. Muestreo. Parámetros poblacionales y estadísticos muestrales.
- Distribuciones de probabilidad de las medias muestrales. Caso normal.
- Intervalo de confianza para la media de una distribución normal de desviación típica conocida. Tamaño muestral mínimo