

A.1) Calificación máxima: 2,5 puntos

Tres hermanos quieren repartirse de forma equitativa un total de 540 acciones valoradas en 1560€ que corresponden a tres empresas A, B y C. Sabiendo que el valor actual en bolsa de la acción A es el triple que el de B y la mitad que el de C ,que el número de acciones de C es la mitad que el de B y que el valor actual en bolsa de la acción B es 1€, encuentre el número de cada tipo de acción que le corresponde a cada hermano.

Solución

Sea A, B y C el número de acciones de las correspondientes empresas que le tocan a cada hermano. Entonces:

$$\begin{cases} 3(A+B+C) = 540 \\ 3 \cdot (3A+1 \cdot B+6C) = 1560 \\ C = \frac{B}{2} \end{cases} \implies \begin{cases} A+B+C = 180 \\ 3A+B+6C = 520 \\ B = 2C \end{cases} \implies \begin{cases} A+3C = 180 \\ 3A+8C = 520 \\ B = 2C \end{cases}$$

$$A = 180 - 3C \implies 3(180 - 3C) + 8C = 520 \implies \begin{cases} C = 540 - 520 = \boxed{20} \\ B = 2C = \boxed{40} \\ A = 180 - 3C = 180 - 60 = \boxed{120} \end{cases}$$

A.2) Calificación máxima: 2,5 puntos

Calcula el área de la región delimitada por las gráficas de las funciones

$$f(x) = 2 + x - x^2$$
 $g(x) = 2x^2 - 4x$

Solución

Las curvas y=f(x) e y=g(x) se cortan en los puntos cuya coordenada x verifica la ecuación

$$0 = g(x) - f(x) = 3x^2 - 5x - 2 \Rightarrow x = \frac{5 \pm \sqrt{25 + 24}}{6} \Rightarrow x = 2, \ x = \frac{-1}{3}.$$

Para $x \in (-1/3, 2)$, g(x) < f(x) (ya que, por ejemplo, g(0) = 0 < 2 = f(0)). Por tanto, el área comprendida por las dos gráficas es

$$\int_{-1/3}^{2} (f(x) - g(x)) dx = \int_{-1/3}^{2} (-3x^2 + 5x + 2) dx = -x^3 + \frac{5x^2}{2} + 2x \Big|_{-1/3}^{2} = -8 + 10 + 4 - \frac{1}{27} - \frac{5}{18} + \frac{2}{3} = \frac{343}{54}.$$

A.3) Calificación máxima: 2,5 puntos

Sean la recta $r \equiv \begin{cases} -x - y + z = 0 \\ 2x + 3y - z + 1 = 0 \end{cases}$ y el plano $\pi \equiv 2x + y - z + 3 = 0$ Se pide:

- a) (0.75 puntos) Calcular el ángulo que forman r y π
- b) (1 punto) Hallar el simétrico del punto de intersección de la recta r y el plano π con respecto al plano z-y = 0
- c) (0.75 puntos) Determinar la proyección ortogonal de la recta r sobre el plano π

Solución

- a) La recta r está en forma implícita y su vector director es $\overrightarrow{d_r}=(2,-1,1)$. El vector normal al plano π es $\overrightarrow{n}=(2,1,-1)$ y por tanto el seno del ángulo α que forman es $\operatorname{sen}(\alpha)=\frac{|\overrightarrow{d_r}\cdot\overrightarrow{n}|}{|\overrightarrow{d_r}||\overrightarrow{n}|}=\frac{1}{3}\Rightarrow \alpha=\operatorname{arcsen}(\frac{1}{3})\approx 19.47^\circ.$
- **b)** La recta r es $(x,y,z)=(1,-1,0)+\lambda(2,-1,1)$. El punto P de intersección entre la recta y el plano se obtiene para λ solución de $2(1+2\lambda)+(-1-\lambda)-\lambda+3=0$, es decir, $\lambda=-2\Rightarrow P(-3,1,-2)$. La recta s que pasa por P

y es perpendicular al plano z-y=0, tiene por ecuaciones paramétricas $s\equiv \begin{cases} x=-3\\ y=1-\lambda \end{cases}$. La recta s y el plano $z=-2+\lambda$

z-y=0 se cortan en el punto $M(-3,\frac{-1}{2},\frac{-1}{2})$, que es el punto medio de PP'. Por tanto P'(-3,-2,1).

c) El plamo π' que contiene a r y es perpendicular a π es: $\pi' \equiv \begin{vmatrix} x-1 & y+1 & z \\ 2 & -1 & 1 \\ 2 & 1 & -1 \end{vmatrix} = 0 \Rightarrow y+z+1 = 0$ y por tanto la recta proyección de r sobre π tiene por ecuación $\begin{cases} 2x+y-z+3=0 \\ y+z+1=0 \end{cases}$

A.4) Calificación máxima: 2,5 puntos

El tiempo de vida de los individuos de cierta especie animal tiene una distribución normal con una media de 8,8 meses y una desviación típica de 3 meses

- a) (1 punto) ¿Qué porcentaje de individuos de esta especie supera los 10 meses? ¿Qué porcentaje de individuos ha vivido entre 7 y 10 meses?
- b) (1 punto) Si se toma al azar 4 especímenes, ¿cuál es la probabilidad de que al menos uno no supere los 10 meses de vida?
- c) (0.5 puntos) ¿Qué valor de c es tal que el intervalo (8.8 c, 8.8 + c) incluye el tiempo de vida (medido en meses) del 98% de los individuos de esta especie?

Solución

a) T ="tiempo de vida (en meses) de un individuo de esta especie tomado al azar" \sim Normal $(\mu=8.8,\sigma=3)$. Con Z la distribución Normal(0,1):

$$P(T > 10) = P(Z > 0.40) \approx 0.3446 \Rightarrow Un 34.46 \%$$
 de los individuos.

$$P(7 < T < 10) = P(-0.60 < Z < 0.40) \approx 0.6554 - 0.2743 = 0.3811 \Rightarrow \text{Un 38.11 \% de los individuos}.$$

b) Elegido al azar un individuo de esta especie $p=P(T\leq 10)\approx 0.6554$. Tomados 4 individuos al azar, sus tiempos de vida serán independientes y así la variable X que contabiliza cuántos de estos 4 no han superado los 10 meses de vida es una Binomial(4,p=0.6554). Se pide

$$P(X \ge 1) = 1 - P(X = 0) = 1 - (1 - 0.6554)^4 = 1 - 0.3446^4 \approx 0.985898637.$$

c) $P(8.8-c \le T \le 8.8+c) = 0.98 \Leftrightarrow P\left(0 \le Z \le \frac{c}{3}\right) = 0.49$. De la tabla de la Normal(0,1) se tiene $\frac{c}{3} \approx 2.33$ y así $c \approx 6.99$ es el valor buscado.

B.1) Calificación máxima: 2,5 puntos

Se considera el siguiente sistema de ecuaciones dependientes del parámetro real a:

$$\begin{cases} ax - 2y + (a - 1)z = 4 \\ -2x + 3y - 6z = 2 \\ -ax + y - 6z = 6 \end{cases}$$

- a) (2 puntos) Discuta el sistema según los diferentes valores de a.
- b) (0,5 puntos) Resuelva el sistema para a = 1

Solución

a)
$$|A| = 3a^2 - 29a + 26 \Rightarrow a = 1 \text{ y } a = \frac{26}{3}.$$

Si $a \neq 1$ o $\frac{26}{3} \Rightarrow$ Sistema compatible determinadod

Si $a = \frac{26}{3} \Rightarrow$ Sistema incompatibled Si $a = 1 \Rightarrow$ Sistema compatible indeterminado.

b)

$$\begin{cases}
 x - 2y = 4 \\
 -y - 6z = 10
 \end{cases}$$

Solución: (-16 - 12t, -10 - 6t, t) con $t \in \mathbb{R}$.

B.2) Calificación máxima: 2,5 puntos

Se considera la función

$$f(x) = \begin{cases} \sin x & \sin x < 0 \\ xe^x & \sin x \ge 0 \end{cases}$$

- a) (0.75 puntos) Estudia la continuidad y la derivabilidad de f en x = 0
- b) (1 punto) Estudia los intervalos de crecimiento y decrecimiento de f restringida a $(-\pi,2)$. Demuestre que existe un punto $x_0 \in [0,1]$ de manera que $f(x_0) = 2$
- c) (0,75 puntos) Calcule $\int_{-\frac{\pi}{2}}^{1} f(x) dx$

Solución

a) $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0) = 0$ así que f es continua en cero. Por lo que se refiere a la derivabilidad,

$$\lim_{x\to 0^-}\frac{f(x)-f(0)}{x}=\lim_{x\to 0^-}\frac{\sin x}{x}=1 \text{ (L'Hôpital) y }\lim_{x\to 0^+}\frac{f(x)-f(0)}{x}=\lim_{x\to 0^+}e^x=1,$$

por tanto, f es derivable en x = 0.

- **b)** Para $-\pi < x < 0$, $f'(x) = \cos x$, y se tiene que f es decreciente en $(-\pi, -\frac{\pi}{2})$ y creciente en $(-\frac{\pi}{2}, 0)$. Para x>0, $f'(x)=e^x(x+1)>0$, así que f es creciente en (0,2), y por ser continua en x=0 lo es en $(-\frac{\pi}{2},2)$. Para la segunda parte, basta aplicar el teorema de Bolzano ya que f es continua, f(0)=0 y f(1)=e>2.
- c) $\int_{-\frac{\pi}{a}}^{1} f(x) dx = \int_{-\frac{\pi}{a}}^{0} \sin x dx + \int_{0}^{1} x e^{x} dx$. La función $F = -\cos x$ es una primitiva de $\sin x$, mientras que integrando por partes obtenemos que $G(x) = e^x(x-1)$ lo es de xe^x . Por Barrow, la integral pedida es $F(0) - F(-\frac{\pi}{2}) + G(1) - F(-\frac{\pi}{2})$ G(0) = 0.

B.3) Calificación máxima: 2,5 puntos

Sean los planos $\pi_1 \equiv x + y = 1$ y $\pi_2 \equiv x + z = 1$

- a) (1,5 puntos) Halle los planos paralelos al plano π_1 tales que su distancia al origen de coordenadas sea 2
- b) (0,5 puntos) Halle la recta que pasa por el punto (0,2,0) y es perpendicular al plano π_2
- c) (0,5 puntos) Halle la distancia entre los puntos de intersección del plano π_1 con los ejes x e y

Solución

- a) Los planos que son paralelos a x+y=1 son de la forma x+y=D, la distancia del origen a un plano que cumpla la ecuación anterior será $\frac{|D|}{\sqrt{2}}=2$, esto implica que $D=\pm 2\sqrt{2}$. Por tanto los planos son $x+y=2\sqrt{2}$ y $x+y=-2\sqrt{2}$.
- **b)** Una recta perpendicular al plano x+z=1 tiene como vector director $\overrightarrow{v}=(1,0,1)$ y si corta al eje y en y=2 pasa por el punto (0,2,0). Por tanto la ecuación de la recta será $(x,y,z)=(\lambda,2,\lambda)$.
- c) Los puntos de intersección con los ejes x e y son los puntos (1,0,0) y (0,1,0) respectivamente. La distancia entre ellos es $\sqrt{2}$.

B.4) Calificación máxima: 2,5 puntos

Una estación de medición de calidad del aire mide niveles de NO_2 y de partículas en suspensión. La probabilidad de que en un día se mida un nivel de NO_2 superior al permitido es 0,16. en los días en los que se supera el nivel permitido de NO_2 , la probabilidad de que se supere el nivel permitido de partículas es 0,33. En los días en los que no se supera el límite de NO_2 , la probabilidad de que se supere el nivel de partículas es 0,08

- a) (0,5 puntos) ¿Cuál es la probabilidad de que en un día se superen los dos niveles permitidos?
- b) (0,75 puntos) ¿Cuál es la probabilidad de que se supere al menos 1 de los dos?
- c) (0,5 puntos) ¿Son independientes los sucesos "en un día se supera el nivel permitido de NO₂" y "en un día se supera el nivel permitido de partículas"?
- d) (0,75 puntos) ¿Cuál es la probabilidad de que en un día se supere el nivel permitido de NO₂, sabiendo que no se ha superado el nivel permitido de partículas?

Solución

- a) Sean los sucesos N ="en un día se supera el nivel permitido de $\mathrm{NO_2}$ " y P ="en un día se supera el nivel permitido de partículas". Se sabe que $P(N)=0.16,\ P(P|N)=0.33$ y $P(P|\overline{N})=0.08$. Entonces $P(N\cap P)=P(P|N)\cdot P(N)=0.33\cdot 0.16=0.0528$.
- **b)** $P(P) = P(P|N)P(N) + P(P|\overline{N}) \cdot P(\overline{N}) = 0.0528 + 0.08 \cdot (1 0.16) = 0.12.$ $P(P \cup N) = P(P) + P(N) P(P \cap N) = 0.12 + 0.16 0.0528 = 0.2272.$
- c) P y N no son independientes, ya que $P(P \cap N) = 0.0528$ y $P(P) \cdot P(N) = 0.12 \cdot 0.16 = 0.0192$ no coinciden.
- **d)** $P(N|\overline{P}) = \frac{P(N \cap \overline{P})}{P(\overline{P})} = \frac{P(N) P(N \cap P)}{1 P(P)} = \frac{0.16 0.0528}{1 0.12} \approx 0.1218.$