Matemáticas II PCE - Mayo 2021

PREGUNTAS TIPO TEST

Conteste a un máximo de 10 cuestiones:

- 1. Sea el polinomio $p(x) = \begin{vmatrix} 1 & 1 & x \\ x & 1 & x \end{vmatrix}$ (determinante). Entonces
 - a) El grado de p(x) es menor que 3
 - b) p(x) = 0 tiene dos raíces enteras
 - c) Ninguna de las otras dos
- $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ y $b_{3,1}$ el número de la tercera fila y 2. Sean la matriz $B = A^4$ dónde
 - primera columna de B. Entonces
 - a) $b_{3.1}$ es un número par
 - b) $b_{3.1} > 10$
 - c) Ninguna de las otras dos
- 3. Sea el sistema de ecuaciones lineales $S \equiv Entonces$ la solución cumple: x + 2y + 3z = 2a) xy > z
 - b) vz > x
 - c) Ninguna de las otras dos
- 4. Sea el cuadrado ABCD de vértices A = (1, 2, 1), B = (1, 5, 2), C = (a, b, c)y D = (1, 1, 4).**Entonces**
 - a) b < c
 - b) c < a
 - c) Ninguna de las otras dos
- 5. Seans la recta que pasa por los puntos A = (1, 1, 1) yB = (2, 0, -2) y d la distancia del punto Q = (0, 3, 4) a la recta s. Entonces
 - a) d > 2
 - b) d < 1
 - c) Ninguna de las otras dos
- 6. Sea el plano π determinado por los puntos A = (0, 1, 1), B = (1, 0, 2)(1,3,1). Entonces
 - a) El plano 2x + y + z 2 = 0 es perpendicular a π
 - b) El plano 3x + y + 7z 10 = 0es perpendicular a π
 - c) Ninguna de las otras dos
- 7. Sean la recta r determinada por los puntos A = (-1,0,0) y B = (0,-1,0) y la recta sdeterminada por los puntos C = (1, 1, 1) yD = (0, 0, 1). La distancia mínima entre un punto de la recta r y un punto de la recta s es el número real k. Entonces

Matemáticas II PCE - Mayo 2021

- a) k > 2
- b) k=1
- c) Ninguna de las otras dos
- 8. Sea la función $f(x) = \sqrt[3]{\frac{x^3 + 3x + 2}{x^3 + 3}}$ (raíz cúbica). Entonces
 - a) La recta 3y 1 = 0 es una recta asíntota de la gráfica de f
 - b) La recta x 2y + 1 = 0 es una recta asíntota de la gráfica de f
 - c) Ninguna de las otras dos
- 9. Sea la función $f(x) = ln \frac{1}{\sqrt{x^2+1}}$ (logaritmo neperiano). Entonces
 - a) f'(0) = 0 y f''(0) > 1
 - b) f'(0) = 0 y f''(0) = 1
 - c) Ninguna de las otras dos
- 10. Sea $k = \int_{-1}^{0} \frac{x^3 1}{x 1} dx$.Entonces
 - a) $k < \frac{1}{2}$
 - b) k > 2
 - c) Ninguna de las otras dos
- $f(x) = \left(\frac{x+1}{x-1}\right)^{x+2}$, D su dominio o campo de existencia y k =11. Sean la función $\lim_{x\to +\infty} f(x). \text{Entonces}$
 - a) k > 4
 - b) $(-\infty, 0) \cup (1, \infty) = D$
 - c) Ninguna de las otras dos
- 12. De una urna con 8 bolas blancas, 6 bolas son negras y 4 bolas rojas, se extraen dos bolas una tras otra sin introducir la primera. Sean p la probabilidad de extraer dos bolas blancas, q la probabilidad de extraer dos bolas negras yr la probabilidad de extraer dos bolas rojas, Entonces
 - a) $m < \frac{1}{5}$ b) $m > \frac{1}{4}$

 - c) Ninguna de las otras dos
- 13. Se considera que la probabilidad de que un tornillo sea defectuosos es 0,1. Sea p la probabilidad de elegir una muestra de 3 tornillos con al menos uno defectuoso. Entonces
 - a) p < 0.2
 - b) p > 0.3
 - c) Ninguna de las otras dos

Matemáticas II PCE - Mayo 2021

- 14. De tres arqueros se sabe que uno gana con probabilidad $\frac{k}{2}$, otro con probabilidad $\frac{k}{4}$ y el último con probabilidad $\frac{k}{8}$. Si sólo juegan esos tres arqueros. Entonces
 - a) k > 1
 - **b)** k < 0.5
 - c) Ninguna de las otras dos
- 15. Se sabe que la probabilidad de ganar en un juego es 0,3. Se juega 5 veces a ese juego. Sea p la probabilidad de que se gane sólo 3 veces. Entonces
 - a) p > 0.2
 - **b)** p < 0.3
 - c) Ninguna de las otras dos